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Abstract

We develop a novel approach to store and query real-
time (contextual) information from/to a population of wire-
less/wired devices generating a stream of spatio-temporal
events corresponding to sensors/applications and/or hu-
mans. The approach is based on a novel peer-to-peer
overlay network architecture which exploits the spatial
relevance of events and the locality of queries to store
and query events close to where they are likely to be
consumed. This paper focuses on the development of the
basic protocols necessary to operate such a system. We
propose a simple model for such systems and explore the
sensitivity of performance (query delay) to node density
and overlay connectivity.

I. Introduction
A significant and largely unaddressed challenge in the

wide-spread use of networked systems is the harnessing
of real-time flows of spatio-temporal information to de-
liver real-time context-awareness to applications and their
users. In this paper, we study a novel peer-to-peer (p2p)
infrastructure enabling wireless and wired users/devices
and their associated applications to store and query a flow
of events that are short-lived and associated with particular
spatial locations. We focus on systems exhibiting locality
in queries, i.e., queries are likely to be related to events
located in the vicinity of the device/user making the query,
see e.g.[1]. To motivate our design, consider a system for
managing available parking spots. Primitive events signi-
fying (possible) vacant parking spots are contributed by
a disparate collection of devices/users including sensors,
payment stations, cameras surveilling the streets or the
human drivers who vacate a spot. A fixed peer overlay is
used to store the corresponding events and answer queries
about them from interested drivers. Such a system would
be a representative application to use our proposed system.

This paper focuses on exploring the design space of
overlay infrastructures of fixed peers that act as gateways
for mobiles, this approach has already proved its merits,
see, e.g., [2]. The challenge lies in designing a p2p network

with the primary purpose of supporting spatio-temporal
context-awareness based on a flow with high spatial inten-
sity of many short lived events. In this context a simple
very low overhead design which achieves low query delays
is desirable. With our design we expect to achieve reduced
traffic (due to the spatial locality of events and queries) and
ultimately reduced query delay (since queries are resolved
locally) in addition to inheriting the advantages of p2p
architectures (e.g., distribution, scalability, robustness, lack
of central administration, use of idling resources, enabling
of grass roots deployments).

Related work.Computing context from primitive events
is a problem of growing interest in the pervasive computing
community. Known approaches based on storing events
in p2p overlays and computing on the results of queries
do not fully satisfy the requirements imposed by the real-
time nature scenario we target in this paper. Seminal DHT-
based p2p storage systems, e.g., Chord [3] Pastry [4] or
GHT [5] are ideally suited for applications performing
location-independentnaming and load balancing across
storage capacity, see [6]. They do not preserve locality
in storage, i.e., two files contributed by the same peer
are not necessarily stored at the same (or close-by) peers
nor do they explicitly incorporate a notion of the stored
information’s relevance in space and time. Attempts to
overcome these limitations while still remaining in the
realm of DHT-based overlays do not fully succeed. Kuhn
et. al. in [7], introduce “containers” as a new abstraction
for storing spatially related events. This way of storing
events lacks flexibility when compared to our approach
and does not naturally maintain locality, i.e., containers
have to be specified ahead of time and two events that
are within a query-defined distance to each other are not
guaranteed to lie in the same container, this will become
obvious subsequently in this paper when we introduce
the ‘range’ query. PeopleNet, [8], introduces the ‘bazaar’,
a topic specific region to resolve topic-specific queries.
Neither of these approaches preserves locality in storage.

Context can be computed and queries resolved more
efficiently in a platform providing access to relations
between events/info rather than simply to the individual



events/info.Similarity queries, see [9], are a reasonably
powerful family of queries for computing context derived
from events exhibiting locality, e.g., retrieving events tied
to a given region. Resolving these types of queries calls
for a modified p2p architecture directly factoringlocality
into information storage and retrieval. Voronoi tessellations
have proven to be a useful geometric structure to capture
similarity queries and spatial locality in networks. SWAM
[9] and VoroNet [10] are designed to enable efficient
processing of similarity queries by using Voronoi dia-
grams. The key idea is to embed data in ad-dimensional
attribute space, and, based on an attribute distance metric,
determine the induced Voronoi tessellation and Delaunay
graph. Edges in the Delaunay graph (in the attribute space)
are mapped to edges in the overlay network among the
peers that currently hold the data items. By contrast, our
focus is on the physical proximity of the locations to
which events/information are tied and to their regions
of relevance. Links are driven by the spatial proximity
of peers and network performance concerns alone, rather
than the data’s attributes. Challenges for SWAM and
VoroNet lie in the overheads associated with managing
a d-dimensional Voronoi diagram particularly when peers
join and leave the p2p network frequently. By contrast, in
our work peer churn results in moving data among peers
to maintain network functionality. Our work and these
approaches consider the introduction of additional overlay
edges, such as those proposed in [11], to improve query
performance. However, in our work we study their effect
on query delay rather than the hop-count and we show how
such edges and topology should be managed to optimize
system performance.

A platform for distributing the location updates for
players in MMOGs is presented in [12]. Updates about
a player’s location need only be distributed to a neigh-
borhood around the player. This is a form of locality in
a virtual space as opposed to our work which employs
locality in thephysicalspace. This observation has critical
implications on performance as physical locality correlates
positively with low delays in the underlay network. The
work in [12] uses geometrical routing on the overlay
network as we do although the underlying topology is quite
different from ours. Our work is based on agenericevent
model that takes explicitly into account spatio-temporal
locality. No such model is offered in [12], where the focus
is on a special type of information, i.e., location updates.
In our work, events have a life-time that is independent
of the life-time of the peers forming the overlay. In [12]
the information disseminated, i.e., the location updates
coincide with the life-time of the players in the MMOG.
Moreover, in our platform a peer can store more than one
event. In [12] information is not stored, each player knows
its own location and publishes updates about it. Finally,

in our work we offer procedures for storing, deleting and
querying events. No equivalent procedures are offered in
[12].

Contributions. In this paper we make several key
contributions. First, we propose, to our knowledge, the
first Voronoi-based p2p overlay network design to sup-
port storage and querying of a spatio-temporal flow of
events/information whose consumers exhibit locality. We
describe the protocols supporting our proposed architecture
for topology and data management under peer churn.
Second, we propose a grid network model including a
stochastic spatio-temporal flow of events and queries,
which enables a preliminary study of the network’s perfor-
mance characteristics. Specifically, we are able to explore
the sensitivity of performance to peer node density and
to the overlay connectivity among the peers, e.g., moving
from neighbor connections only, to an overlay network
augmented with Kleinberg edges [11]. These results are
further validated via simulation over networks with ran-
domly located peers, i.e., (as opposed to a grid.) Our main
finding is that given an event and query load there exists
a range of peer densities which offer good query delay
- one would want to operate the system there. We also
show the beneficial impact of the Kleinberg edges on the
mean query delay, we suggest a further optimization which
involves only placing Kleinberg edges on the scale of the
locality of queries.

II. Event and Query Models
Our focus is on capturing a spatio-temporal flow of

(short-lived) events which can represent a wide range of
data/information associated with users, applications, sen-
sors or machines. These are formally defined as follows:

Definition 1. An evente is a five-tuple

(e.location, e.range, e.time, e.duration, e.type) ∈ E

whereE = R2 × R+ × R× R+ × T and T denotes a set
of possible event types.

As shown in Fig. 1, this can be visualized as a cylin-
der where an evente has associated spatial coordinates,
e.location indicating where the event ‘occurred’ or is
centered, a rangee.rangedefining the region where it is
relevant (see [13] for a similar concept ‘Area Of Interest
(AOI)), as well as a time at which it is generated/starts
and duration:e.time and e.duration respectively. We as-
sume that the devices/applications that generate events
have geo-location capability and synchronized clocks. This
allows them to ‘stamp’ the events with meaningful spatio-
temporal coordinates. For simplicity we denote the disc
centered at locatione.location with radius e.range as
B(e.location, e.range) and refer to events whose duration
contains the current time asactive. The possible event



types, e.g., ‘change-of-status’ type, are assumed to be
predefined, but for the remainder of the paper we will not
focus on this aspect.

time

x -coord

y-coord
e.duration

e.location

e.time

e.rangeB(e)

Fig. 1. Event model.

The goal of the infrastructure is to efficiently support
spatio-temporal queries. In this paper we focus onrange
querieson activeevents. This is done to simplify notation,
i.e., remove time, but one can easily generalize this to
consider queries on past or even future events. Range
queries are defined as follows:

Definition 2. TheRange QueryRQ(l, r) returns all active
eventse within a ranger of a locationl, i.e., events cur-
rently stored in the system such thate.location ∈ B(l, r).

For example, return all users/resources currently avail-
able within200m of my location. See [14] for definitions
of more complex queries, e.g, thek-nearest neighbor query
and how they can be expressed in terms of the range query.

We conclude by formalizing the operational scenario of
interest in this paper, specifically:

Assumption 1. Spatial locality of events and queries.
Event and queries submitted by users/devices exhibit lo-
cality in that they are associated with close by locations.

Although we will not preclude queries not satisfying
such spatial locality, this assumption will drive in part our
design choices. It is motivated by the idea that spatio-
temporal context awareness for short lived events makes
sense, and is most likely to be relevant, close to where
users/devices currently dwell.

III. Architecture
We consider a platform where the participating entities

can play one or more roles: contribute events, make
queries, and/or serve as a peer in the p2p overlay network.
Further we envisage a setting where there may be (mobile)
wireless entities, e.g., sensors, phones etc., which can not
serve as peers, and wired fixed devices, e.g., PCs and
corporate servers, which can. All entities are assumed to
know their locations, but exact locations are not necessary.
Fig. 2 exhibits the elements of the platform which will be
discussed below.

A. Overlay Topology Management & Routing
We let Π = {p1, p2, . . .} denote the set of peers

identified by their unique locationspi ∈ R2. They are
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Fig. 2. Elements of the p2p architecture.

interconnected via links in a structured p2p overlay, repre-
sented in Fig. 2 by thick straight lines. Overlay links are
realized by one or more physical links at the IP layer. The
basic overlay connectivity is simple and driven by the goal
of exploiting the spatial locality of queries – it corresponds
to the Delaunay graph induced by the peers’ locations. See
[15] for the definition of theVoronoi tessellationV (Π)
induced byΠ ⊂ R2, the cellC(p|Π) corresponding to a
peerp and theDelaunay Graph(DG) induced byΠ ⊂ R2.
In the sequel, when clear we will abuse notation and denote
the Voronoi cellC(p|Π) corresponding to the peerp by
Cp. We let N(p) denote the set of peerp’s neighbors in
the Delaunay graph.

There is already substantial work on distributed proto-
cols to maintain a Delaunay graph among a set of peers,
addressing efficiency, correctness, and, in part, peer churn,
see e.g., [16; 17; 18] and [19]. This work is orthogonal
to ours. As such, in this paper we will defer to this work,
and simply assume that protocols are in place to maintain
such overlay structures.

Assumption 2. Topology and Routing.We assume the
overlay connectivity of our platform is asupersetof the
Delaunay graph, and peers execute a distributed protocol
to maintain the Voronoi tessellation and the Delaunay
graph. We further assume peers employ greedy routing to
store events and make queries over the overlay.

Greedy routing here, refers to a policy where each peer
forwards a message (event or query) destined to a location,
sayl, to the neighbor which is closest tol with the intent of
eventually reaching the peer closest to the location. These
choices for our platform result in the following beneficial
properties:

Greedy routing always converges. Greedy routing on a
Delaunay Graph always succeeds, see [20]. Moreover such
routing on a superset of the DG also succeeds, see [21],
thus we will consider additional overlay links to optimize
system performance. Note that the length of the shortest
path between two peers in the Delaunay graph is a constant
times their Euclidean distance, see e.g., [22]. Thus, paths
chosen on the overlay network might roughly correlate to
low cost routes in the underlying IP network. This assertion
is considered critical by Castro et. al. [23].

Limited routing storage overhead per peer.Greedy



routing requires each peer to maintain the location of its
neighbors in the DG only, Moreover, the routing informa-
tion exhibits locality, that is, inconsistencies in the routing
information at a given peer will not lead to poor routing
outside the peer’s local region. We deem this important for
networks with peer churn.

Maintaining the DG under churn is scalable.For
p2p networks experiencing churn, some members of the
network will have to update their neighborhoods. It can
be proved that when a peer joins/leaves the p2p overlay,
only its neighbors and on average anO(1) additional set
of peers must update their state – we omit the proof due
to space restrictions, see also [24]. Thus topology manage-
ment under churn in our platform is not computationally
demanding and can be done in a distributed manner.

Routing on the overlay topology, assuming a homoge-
neous distribution of peers, roughly implies that the peer
hop count will grow linearly in the distance to be traveled.
Adding extra edges among peers, i.e., operating on a
superset of the DG, can significantly reduce the number
of hops a query has to traverse. This however requires
adding edges with care. In the sequel we will use the well
known result of [11] which we summarize as follows

Fact 1. [11] Let s and t be the source and destination
peers of a query respectively and suppose they are drawn
uniformly from ann×n square grid. Suppose each peeru
on the grid has edges to its immediate neighbors as well as
to one other peerv chosen with probability proportional
to d(u, v)−2 whered(u, v) denotes the distance between
u and v, then there exists a decentralized algorithm
performing greedy-routing and a constantc, independent
of n, so that the expected number of hops betweenu and
v is at mostc(log(n))2.

A mechanism to add such edges to our overlay network
is easily devised. A peer need only generate a location
at random according to a distribution proportional to the
inverse of the square of the distance from its own location,
and then route a message to that location, i.e., the closest
peer to the randomly selected location. In the sequel we
denote such additional edges, ‘Kleinberg’ edges, and in
§IV we explore the resulting performance benefits.

B. Data Management and Query Processing
Our spatial locality assumption on events and queries

motivates the following rule.

Rule 1. Event storage and deletion.An evente is stored
at the overlay peerp ∈ Π which is closest toe.location,
i.e., such thate.location ∈ C(p|Π).

This rule is easily implemented in our framework by
greedily routing and storing the event to the peerp closest
to e.location. One can consider various policies for event
deletion. Since in this paper we focus only onactive

events they are deleted once they expire. However one
can envisage policies where events are only deleted when
storage space runs out or borrowing from caching policies
whereby least recently queried events are deleted when
new ones are to be stored.

One of our design goals is to address the possibility of
peer churn. Clearly this not only requires managing the
overlay topology but also where events are stored. Each
time a new peerpnew joins the p2p network a subset of
the events currently stored in the p2p network may fall
within its Voronoi cell, and according to Rule 1 those
events should be moved topnew. Data management under
churn is scalable having low overheads, since only events
in pnew ’s neighborhood may need to be moved:

Fact 2. Scalability of data management.If a new peer
pnew joins the p2p network only events stored by neigh-
boring peersN(pnew) in the updated topology may need
to be moved. If a peerpleaves leaves the network its events
will be moved to its current neighborsN(pleaves). When
nodes’ locations follow a spatial Poisson point process the
average number of neighbors is 6.

The proof of Fact 2 is intuitively clear and omitted due
to space limitations. Since a peer will typically have a
low number of neighbors, churn results in low overhead,
irrespective of the total size of the network, assuring the
scalability of our platform.

One can envisagelazy mechanisms to reduce the over-
heads associated with moving events, e.g., for very short
lived events and queries responded to on a best effort basis,
placing new events as appropriate atpnew may suffice.

The ability to process range queries, see§II, is key to
our proposed solution. A range query RQ(l, r) initially
issued by a peer or proxy peer (on behalf of another
entity using the overlay)q, is greedily routed to the peer
p closest to locationl. When the query arrives atp the
query resolution process is initiated. Specificallyp checks
if it has events in the range query’s disc and forwards the
query to its neighbors. Neighboring peers check if their cell
overlaps with the range query’s disc, if so they check for
events and forward the query to their own neighbors. We
focus on basic functionality here, but clearly a peer need
not forward the query back to the peer which originally
forwarded it, and it need not forward it on more than
once to its neighbors. This recursive query propagation
eventually stops if there are only a finite number of peers
in the range query’s disc. The peers involved with the
processing of the query then collect the intermediate results
and forward them to the (proxy) peerq which originated
the query. The resolution process is depicted in Fig. 3.
Note, that the reply to a query can be sent directly to
the IP address of the originating (proxy) peer q, reducing
traffic on the overlay network. Algorithm 1 addresses the



range query resolution.

Algorithm 1 Range Query Resolution

1: Resolve Query(q, p,RQ(l, r)). {resolvesRQ(l, r) on
behalf of peerq at peerp. }

2: if B(l, r) ∩ Cp 6= ∅ then
3: response set = ∅
4: for all eventse at p s.t. e.location ∈ B(l, r) do
5: response set = response set ∪ {e}
6: end for
7: for t ∈ N(p) do
8: response set = response set ∪

ResolveQuery(p, t, RQ(l, r))
9: end for

10: sendresponse set to q
11: end if

q

p
l

r

Range query
    RQ(l,r)

peers not 
participating
in  RQ(l,r)
resolution

peers  
participating
in  RQ(l,r)
resolution

Fig. 3. Resolution of range query RQ (l, r).

IV. Performance Analysis
Query delays in our overlay network are to first-order

determined by the number of peers a query message
traverses and the queuing/processing at each intervening
peer. A high density of peers can make the number of
hops a query traverses high – this is a side-effect of our
decision to route queries on the Delaunay graph. A low
density of peers might result in peers being responsible
for larger regions, increasing the storage and traffic loads
they see, and thus increasing the per peer queuing delay.
This suggests that for our network, “more is not always
better.” We explore this below.

Performance analysis.To study these performance
trade-offs we consider the followingidealized model.
Assume that peers are spacedδ m apart in a square grid
of physicaldimensionsr × r m2, see Fig. 4, so there are
a total of b r

δ c
2 peers. To avoid edge effects we assume

the grid wraps around, i.e, its geometry is akin to a torus,
e.g., peerp1 in Fig. 4 has a distance of1 hop from the
peersp2, p3 andp4. Peers act as sources and destinations
for queries. We assume that events are generated according
to a spatio-temporal homogeneous Poisson Point Process
(PPP) [25] with intensityγe events/sec-m2. Each event is
stored at its closest peer, so since each peer is associated

with a cell of sizeδ2 m2, each peer sees an intensity
of γeδ

2 events/sec. Similarly, queries are submitted ac-
cording to an independent spatio-temporal homogeneous
PPP with intensityγq queries/sec-m2. They are assumed
to be processed by the closest (proxy) peer, so each such
peer supports an intensityγqδ

2 queries/sec. The destination
of a query isuniformly distributed among the peers in a
diamond with ‘radius’l m centered around the associated
source (proxy) peer. The parameterl is a measure of the
spatial locality of the queries. The lowerl, the higher
the spatial locality. Queries are assumed to be greedily
routed on the grid from the source peer to the destination,
with ties broken at random. Queries are assumed to be
point range queries, i.e., RQ(l, r) where r is negligible.
To make things tractable we assume that the service time
for processing, storing or relaying a query at a peer is
an exponential with parameterµ. With these assumptions
this model corresponds to a network of M/M/1 queues with
generalized routing [26]. This grid model is only a first-
order caricature of a homogeneous system in terms of both
the traffic and peer topology, but as we will see gives some
key insights on the characteristics of such systems.

p p

p p3 4

1 2

ps

l

pd

δ r

spatial
locality
diamond
for queries
submitted 
by p
 

s

 n = | r/   |δ

Fig. 4. Idealized grid model.

Symmetry in this grid model allows us to easily estimate
the end-to-end delays on the overlay network. To account
for the relayed traffic leth(δ) denote the average number
of hops traversed by a typical query when the peers are
spacedδ m apart. Then, the total traffic load that will be
serviced in the network consists of two components: (1)
storing of events, which isn2γeδ

2; and (2) query relaying
and processing, which is the number of peersn2, times
the query load per peer, times the average hop count, i.e.,
n2× γq × δ2×max(1, h(δ)). By symmetry, the total load
is divided equally amongst then2 peers giving a load per
peer of

γ(δ) = γq × δ2 ×max(1, h(δ)) + γeδ
2. (1)

The average end-to-end delay,D, for a typical query cor-
responds to traversingh(δ) M/M/1 queues each supporting
a traffic intensity γ(δ). Given the additivity of delays



experienced across the network we have that:

D = max(1, h(δ))
1

µ− γ(δ)
. (2)
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Fig. 5. Average query delay vs. cell side δ.

Note that topology and locality of the traffic on the
overlay network impact the mean hop counth(δ) of a
typical query. If each peer maintains edges to only its
grid neighbors the number of hops a query traverses is
roughly proportional to the mean distance and inversely
proportional toδ, i.e.,

h(δ) ≈ c1
l

δ
. (3)

wherec1 is a constant. Fig. 5 exhibits a plot of the query’s
mean delay, i.e., Eq. 2, on a log scale versus the grid
spacingδ when there is no locality, i.e.,l = r/2, and
µ = 1, r = 10, γq = 0.05, γe = 0.05 and c1 = 0.5. As
can be seen a higher density of peers, i.e., lowerδ, leads to
a high mean query delay, due to the increased hop count of
paths, while a lower density, i.e., highδ, leads to high mean
query delays due to increased congestion in the traversed
peers. Indeed, ifδ is too high the traffic load on a peer may
exceed its capacity. For a given set of system parameters
there is an optimal density for peers, see Fig. 5.

Admittedly, the grid model is idealized. To capture
more realistic topologies we simulated a Homogeneous
Poisson Delaunay (HPD) topology. In a HPD topology the
peers’ locations are generated by a homogeneous Poisson
spatial point process with intensityλ and peer connectivity
follows the edges of the corresponding DG. The peers were
placed inside ar× r square region and we used the same
event/query model as the one described in the previous
paragraph for the grid topology. Additionally, we consider
a HPD topology augmented by Kleinberg edges. In Fig.
5, we include our simulated results for HPD topologies.
We use the same horizontal axis for grid/HPD through the

relationshipδ ∼
√

r2√
n2 ↔

1√
λ

. The theoretical results based
on the grid capture the qualitative behavior of the HPD
topology but there is a significant quantitative discrepancy
for high δ/low λ. The latter is due to the arbitrary choice
of the constants involved in Eqs. 3,4 and the effect of the
statistical variations of the cells’ sizes. Indeed, in contrast
to the grid model, in a HPD topology the cell sizes for all
the peers are not the same. This means that a peer with a
bigger cell than the rest will suffer more traffic - that can
lead to instability affecting all the queries routed through
that peer. Thus, the effect we show for highδ/low λ. When
λ is high the average cell size goes down and the effect
of varying cell sizes is mitigated, this is a fundamental
property of HPDs. In this case the traffic becomes more
uniform essentially like a grid - observe the convergence
of the theoretical and simulated curves. This motivates our
future research on ways to adapt the topology to non-
uniformities either by adapting the peers’ cell sizes, e.g.,
by associating a “virtual” location with a peer, allowing
modification of the associated Voronoi cells or the edges
connecting the peers.

As mentioned in§III-A one can improve the perfor-
mance in this system by including additional edges in the
graph. In particular adding a single additional edge per
peer as proposed by Kleinberg (see Fact 1) reduces the
mean hop count to

h(δ) ≈ c2(log(
l√
2δ

))2 (4)

wherec2 is a constant. Note in Eq. 4 we have accounted
for the fact that our queries are uniform in a locality
diamond of radiusl. The diamond centered at each peer
includes roughly2 l2

δ2 peers, giving an ‘equivalent’ square
grid to that considered by Kleinberg withn =

√
2 l

δ and
divided by a factor of2 to account for distances in wrap
around geometry. As expected and shown in Fig. 5 these
new edges substantially reduce the mean end-to-end delay
on the overlay – here we setc2 = 1. Indeed the best
performance is achieved with a much largerδ, i.e., one
can get away with a much lower density of peers.

Fig. 6 shows some simulated results for the mean query
delay on various overlay topologies as query locality is
varied. We compare three topologies: Voronoi, Voronoi
augmented with Kleinberg edges, and Voronoi augmented
with Kleinberg edges restricted to the locality diamond of
each peer. The values of the specific parameters used is
µ = 1, γq = 0.1, γe = 0.05, r = 10, n2 = 5000. The
simulation lasted for100000 time units. From Fig. 6 it is
clear that when the locality of the queries is high, e.g.,0.5,
the delay of the queries is mostly due to the processing
rather than queuing and the grid overlay performs well.
However, as locality is reduced, i.e.,l increases, the
benefit of Kleinberg edges appears, with an improvement



in performance of up to50% for this scenario. Further if
the scale of locality were known up front, then limiting
the edges within the locality diamond leads to a small
yet consistent performance improvement, although simply
adding edges throughout the whole network is robust and
performs quite well. The graph also shows the performance
curves associated with Eqs. 2, 3 and 4, wherec1 and c2

were estimated by matching the value of the equations
with the values reported by our simulations forl = r

2 = 5.
As can be seen the analytical and simulation results match
very well. This validates the ability of our model to capture
qualitatively the performance of the actual system.

0 1 2 3 4 50

5

10

15

locality

m
ea

n 
de

la
y

Voronoi, simulation

grid, theory

grid + Kleinberg edges, theory

Voronoi + Kleinberg edges, simulation

Voronoi + locality-based Kleinberg edges, simulation

HPD,

grid + Kleinberg

HPD + Kleinberg

HPD + locality-based Kleinberg

Fig. 6. Average query delay vs. locality.

V. Conclusion and Ongoing Work

We have introduced a novel p2p architecture for storing
spatio-temporal events that is particularly suitable when
there is spatial locality in queries. The core idea is to
exploit spatial locality by aligning the overlay topology
with the Delaunay Graph induced by peer locations, and
augmenting it by Kleinberg edges. In our ongoing work
we are extending our overlay’s capabilities with a method
to add fault-tolerance by replicating data to the peers
closest to each event’s associated location. Additionally,
we are extending data management to address issues
like load-balancing enabling, if needed, better sharing of
storage resources when they are limited at each peer.
Ongoing work is also further addressing the impact of
non-homogeneity on the performance of our network. Non-
homogeneity manifests itself in p2p networks not only in
terms of the traffic but in terms of peer locations and thus
topology. Peers with disproportionally large cells can be-
come hot-spots for the performance of the entire network.
Researching algorithms to augment the overlay topology
with congestion driven edges and/or peer incentives to
dynamically reconfigure the topology to achieve an even
traffic distribution are also underway.
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